492 research outputs found

    UZBEKISTAN MOD FOREIGN LANGUAGE APTITUDE TEST: A CRITICAL EVALUATION

    Get PDF
    Globalization has entailed a growth in impor-tance of the second/foreign language teachingand learning all over the world with the numberof both voluntary and involuntary language learn-ers increasing on daily basis. There is, however,a widely attested discrepancy in actual resultsachieved by those engaged in second/foreignlanguage learning usually explained by means ofinvocation of a specialized talent that certain in-dividuals have, whilst others lack. Such a talent isthought to be measurable and the results obtainedare regarded as valid predictors of success forintensive foreign language programs. The pres-ent article deals with critical appraisal of one ofsuch instruments in terms of both its theoreticaland practical validity. A number of points to beaddressed for the purpose of the instrument im-provement are demonstrated via referral to bothbasic statistic techniques and scientific consensusin the field of language learning aptitude research

    Novel optical devices for information processing

    Get PDF
    Optics has the inherent advantages of parallelism and wide bandwidths in processing information. However, the need to interface with electronics creates a bottleneck that eliminates many of these advantages. The proposed research explores novel optical devices and techniques to overcome some of these bottlenecks. To address parallelism issues we take a specific example of a content-addressable memory that can recognize images. Image recognition is an important task that in principle can be done rapidly using the natural parallelism of optics. However in practice, when presented with incomplete or erroneous information, image recognition often fails to give the correct answer. To address this problem we examine a scheme based on free-space interconnects implemented with diffractive optics. For bandwidth issues, we study possible ways to eliminate the electronic conversion bottleneck by exploring all-optical buffer memories and all-optical processing elements. For buffer memories we examine the specific example of slow light delay lines. Although this is currently a popular research topic, there are fundamental issues of the delay-time-bandwidth product that must be solved before slow light delay lines can find practical applications. For all-optical processing we examine the feasibility of constructing circuit elements that operate directly at optical frequencies to perform simple processing tasks. Here we concentrate on the simplest element, a sub-wavelength optical wire, along with a grating coupler to interface with conventional optical elements such as lenses and fibers. Even such a simple element as a wire has numerous potential applications. In conclusion, information processing by all-optical devices are demonstrated with an associative memory using diffractive optics, an all-optical delay line using room temperature slow light in photorefractive crystals, and a subwavelength optical circuit by surface plasmon effects

    Coordination of supply chain inventory systems with private information

    Get PDF
    This dissertation considers the problems of coordinating different supply chain inventory systems with private information under deterministic settings. These systems studied are characterized by the following properties: (a) each facility in the system has self decision-making authority, (b) cost parameters of each facility are regarded as private information that no other facilities in the system have access to, and (c) partial information is shared among the facilities. Because of the above properties, the existing approaches for systems with global information may not be applicable. Thus, new approaches for coordinating supply chain inventory systems with private information are needed. This dissertation first studies two two-echelon distribution inventory systems. Heuristics for finding the replenishment policy of each facility are developed under global information environment. In turn, the heuristics are modified to solve the problems with private information. An important characteristic of the heuristics developed for the private information environment is that they provide the same solutions as their global information counterpart. Then, more complex multi-echelon serial and assembly supply chain inventory systems with private information are studied. The solution approach decomposes the problem into separate subproblems such that the private information is divided as required. Global optimality is sought with an iterative procedure in which the subproblems negotiate the material flows between facilities. At the core of the solution procedure is a node-model that represents a facility and its corresponding private information. Using the node-model as a building block, other supply chains can be formed by linking the node-models according to the product and information flows. By computational experiments, the effect of the private information on the performance of the supply chain is tested by comparing the proposed approach against existing heuristics that utilize global information. Experimental results show that the proposed approach provides comparable results as those of the existing heuristics with global information

    Layout optimization in ultra deep submicron VLSI design

    Get PDF
    As fabrication technology keeps advancing, many deep submicron (DSM) effects have become increasingly evident and can no longer be ignored in Very Large Scale Integration (VLSI) design. In this dissertation, we study several deep submicron problems (eg. coupling capacitance, antenna effect and delay variation) and propose optimization techniques to mitigate these DSM effects in the place-and-route stage of VLSI physical design. The place-and-route stage of physical design can be further divided into several steps: (1) Placement, (2) Global routing, (3) Layer assignment, (4) Track assignment, and (5) Detailed routing. Among them, layer/track assignment assigns major trunks of wire segments to specific layers/tracks in order to guide the underlying detailed router. In this dissertation, we have proposed techniques to handle coupling capacitance at the layer/track assignment stage, antenna effect at the layer assignment, and delay variation at the ECO (Engineering Change Order) placement stage, respectively. More specifically, at layer assignment, we have proposed an improved probabilistic model to quickly estimate the amount of coupling capacitance for timing optimization. Antenna effects are also handled at layer assignment through a linear-time tree partitioning algorithm. At the track assignment stage, timing is further optimized using a graph based technique. In addition, we have proposed a novel gate splitting methodology to reduce delay variation in the ECO placement considering spatial correlations. Experimental results on benchmark circuits showed the effectiveness of our approaches

    Hypsometry and Volume of the Arctic Ocean and Its Constituent Seas

    Get PDF
    This paper presents an analysis of the Arctic Ocean and its constituent seas for seafloor area distribution versus depth and ocean volume. The bathymetry from the International Bathymetric Chart of the Arctic Ocean (IBCAO) is used together with limits defining this ocean and its constituent seas from the International Hydrographic Organization (IHO) as well as redefined limits constructed to confine the seas to the shallow shelves. IBCAO is a bathymetric grid model with a resolution of 2.5 x 2.5 km, which significantly improved the portrayal of the Arctic Ocean seafloor through incorporation of newly released bathymetric data including echo soundings from U.S. and British navies, scientific nuclear submarine cruises, and icebreaker cruises. This analysis of seafloor area and ocean volume is the first for the Arctic Ocean based on this new and improved portrayal of the seafloor as represented by IBCAO. The seafloor area and volume are calculated for different depths starting from the present sea level and progressing in increments of 10 m to a depth of 500 m and in increments of 50 m from 550 m down to the deepest depth within each of the analyzed seas. Hypsometric curves expressed as simple histograms of the frequencies in different depth bins and depth plotted against cumulative area for each of the analyzed seas are presented. The area and volume calculations show that the entire IHO-defined Arctic Ocean makes up 4.3% of the total ocean area but only 1.4% of the volume. Furthermore, the IHO Arctic Ocean is the shallowest (mean depth 1201 m) of all the major oceans and their adjacent seas. The continental shelf area, from the coasts out to the shelf break, make up as much as 52.9% of the total area in the Arctic Ocean, defined in this work as consisting of the oceanic deep Arctic Ocean Basin; the broad continental shelves of the Barents, Kara, Laptev, East Siberian, Chukchi, and Beaufort Seas; the White Sea; and the narrow continental shelf off both the Canadian Arctic Archipelago and northern Greenland. This result indicates that the Arctic Ocean has significantly larger continental shelves compared with all the other oceans, where previous studies show that the proportion of shelves, from the coasts out to the foot of the continental slopes, only ranges between about 9.1 and 17.7%. Furthermore, the derived hypsometric curves show that most of the Arctic Ocean shelf seas besides the Barents Sea, Beaufort Sea, and the shelf off northern Greenland have a similar shape, with the largest seafloor area between 0 and 50 m. The East Siberian and Laptev seas, in particular, show area distributions concentrated in this shallow depth range, and together with the Chukchi Sea they form a large flat shallow shelf province composing as much as 22% of the entire Arctic Ocean area but only 1% of the volume. This implies that the circulation in the Arctic Ocean might be very sensitive to eustatic sea level changes. One of the aims with this work is to make up-to-date high-resolution area and volume calculations for the Arctic Ocean at various depths available for download

    Some Results in the Hyperinvariant Subspace Problem and Free Probability

    Get PDF
    This dissertation consists of three more or less independent projects. In the first project, we find the microstates free entropy dimension of a large class of L1[0; 1]{ circular operators, in the presence of a generator of the diagonal subalgebra. In the second one, for each sequence {cn}n in l1(N), we de fine an operator A in the hyper finite II1-factor R. We prove that these operators are quasinilpotent and they generate the whole hyper finite II1-factor. We show that they have non-trivial, closed, invariant subspaces affiliated to the von Neumann algebra, and we provide enough evidence to suggest that these operators are interesting for the hyperinvariant subspace problem. We also present some of their properties. In particular, we show that the real and imaginary part of A are equally distributed, and we find a combinatorial formula as well as an analytical way to compute their moments. We present a combinatorial way of computing the moments of A*A. Finally, let fTkg1k =1 be a family of *-free identically distributed operators in a finite von Neumann algebra. In this paper, we prove a multiplicative version of the Free Central Limit Theorem. More precisely, let Bn = T*1T*2...T*nTn...T2T1 then Bn is a positive operator and B1=2n n converges in distribution to an operator A. We completely determine the probability distribution v of A from the distribution u of jTj2. This gives us a natural map G : M M with u G(u) = v. We study how this map behaves with respect to additive and multiplicative free convolution. As an interesting consequence of our results, we illustrate the relation between the probability distribution v and the distribution of the Lyapunov exponents for the sequence fTkg1k=1 introduced by Vladismir Kargin

    Jumpstart at UMass Boston

    Get PDF
    Jumpstart is a national early education organization that recruits and trains college students to serve preschool children in low-income neighborhoods. Our proven curriculum helps children develop the language and literacy skills they need to be ready for kindergarten, setting them on a path to close the achievement gap before it is too late
    corecore